Aldehydes and Ketones Lecture 4 By Dr. Sali Jabrou

Aldehydes and Ketones

Carbonyl compounds are molecules containing the carbonyl group, C=O. These include:

- Aldehydes
- Ketones
- Carboxylic acid derivatives:
- Esters
- Anhydrides
- Acid halides
- Amides

<u>**Carbonyl compounds**</u> are often classified as <u>Class I or Class II</u> depending if they have a group on the C=O that can be replaced by a nucleophile or not.

<u>Aldehydes</u>, the carbonyl group is linked to either two hydrogen atom or one hydrogen atom and one carbon containing group such as alkyl, aryl or aralkyl group Examples

<u>ketones</u>, the carbonyl group is linked to two carbon containing groups which may be same or different alkyl, aryl group. If two R and R' groups are same, the ketone is called simple or symmetrical ketone and if R and R' are different, then ketone is known as mixed or an unsymmetrical ketone.

Nomenclature of Aldehydes and Ketones

Aldehydes, <u>IUPAC</u> nomenclature:

Parent chain = longest continuous carbon chain containing the carbonyl group; alkane, drop –e, add –al. (note: no locant, -CH=O is carbon #1.)

 CH_3 CH₃CHCH=O $CH_3CH_2CH_2CH=O$ butanal 2-methylpropanal $H_2C=O$ CH₃CH=O methanal ethanal \sim

Ketones: <u>IUPAC</u> nomenclature:

Parent = longest continuous carbon chain containing the carbonyl group. Alkane, drop –e, add –one. Prefix a locant for the position of the carbonyl using the principle of lower number.

$$\begin{array}{ccccccc} O & O & O \\ H_3CH_2CH_3 & CH_3CH_2CH_2CH_3 & CH_3CCH_2CH_2\\ \end{array}$$

2-butanone

3-pentanone

2-pentanone

Physical Properties

Structure of Aldehydes and Ketones

The carbonyl carbon of an aldehyde or ketone is sp2-hybridized.

- The bond angle is close to 120° (trigonal planar).
- The carbon-oxygen double bond consists of:
- $-A \sigma C$ -O bond
- $-A \pi C=O bond$

Boiling point: since there are no hydrogen bonding in aldehydes or ketones, the boiling point will be lower than those of alcohols of similar molecular weights but higher than those non-polar molecules like alkanes, ethers, etc...because of the strong dipole.

While aldehydes and ketones do not H-bond with themselves, they can hydrogen bond with other molecules bearing acidic hydrogen. They are therefore very good solvent for alcohols and amines.

GENERAL METHODS OF PREPARATION OF ALDEHYDES AND KETONES

1) From alcohol

i. Oxidation of alcohol

Since the oxidizing agent used in the above reactions is a strong oxidizing agent, it oxidizes aldehydes and ketone further to carboxylic acids

To prevent further oxidation, a mild oxidizing agent such as pyridinium chlorochromate (pcc), CrO3.C5H5N·HCl or CrO3NH+CrO3Cl- are used Collin's reagent [(C5H5N)2 ·CrO3] can also used.

(ii) Catalytic dehydrogenation of alcohols

$$RCH_{2}OH \xrightarrow{Cu}_{300^{\circ}C} RCHO + H_{2}$$

$$1^{\circ} \text{ alcohol} Aldehyde$$

$$R \xrightarrow{CH-OH} \xrightarrow{Cu}_{300^{\circ}C} R \xrightarrow{C=O+H_{2}}$$

$$2^{\circ} \text{ alcohol} \text{ ketone}$$

From alkenes (i) Reductive ozonolysis of alkenes

From alkynes

Reduction reactions I. Catalytic reduction to alcohol

$$R = O + H_2 \xrightarrow{\text{Ni, Pt or Pd}} R - CH_2 - OH_1^{\circ} \text{alcohol}$$

$$R' = O + H_2 \xrightarrow{\text{Ni, Pt or Pd}} R' + CH - OH_R^{\circ} + CH - OH$$

USES OF ALDEHYDES AND KETONES

(a) Uses of formaldehyde

i. The 40% solution of formaldehyde in water (formalin) is used as disinfectant, germicide and antiseptic. It is used for the preservation of biological specimens

ii. It is used for silvering of mirrors

iii. It is used for making synthetic plastics, like Bakelite, urea- formaldehyde resinetc

(b) Uses of acetaldehyde

i. It is used in preparation of acetic acid, dyes, drugs, etcii. As an antiseptic inhalant in nose troubles

(c) Uses of benzaldehyde

i. As flavoring agent in perfume industryii. In manufacture of dyes.

(d) Uses of acetone

i. As a solvent for cellulose acetate, resin etc.ii. As a nail polish removeriii. In the preparation of an artificial scent and synthetic rubber